Origin of the Manleluag Hyperalkaline Hot Spring, Philippines EDMUNDO VARGAS¹*, CHELO S. PASCUA¹, CARLO A. ARCILLA¹, M.L.L. HONRADO ¹, W. RUSSELL ALEXANDER², KAZUTO NAMIKI³, N. FUJII⁴, MINORU YAMAKAWA⁴, TSUTOMU SATO⁵ AND IAN G. MCKINLEY⁶ ¹National Institute of Geological Sciences, University of the Philippines, Diliman, Quezon City 1101 Philippines (*correspondence: buruka55@yahoo.com) ²Bedrock Geoscience, Auenstein, Switzerland ³Obayashi Corporation, Tokyo, Japan ⁴RWMC, Tokyo, Japan ⁵Graduate School of Engineering, Hokkaido University, Sapporo, Japan The origin of the Manleleuag Hyperalkaline Hot Spring is a unique occurrence in the Philippines. It is characterized by hyperalkaline (pH10 to 11.5) and highly reducing waters (-200 to 300mV) with little dissolved oxygen present (<1mg/L). Active gaseous exhalation could be methane or hydrogen gas due to its combustible nature. Its origin is puzzling to most and has been widely attributed to a nearby volcanic plug. Here we present an alternative origin of the Manleleuag Hyperalkaline Hotspring – it is produced by the dissolution of underlying gabbros of the Zambales Ophiolite. Its alkalinity is due to the hydrolysis of Mg-rich rocks (i.e. gabbros) while the hydrolysis and oxidation of iron in minerals (e.g. pyroxenes) accounts for its highly reducing state. A geochemical reaction path model (i.e. Geochemist's Workbench) was used to elucidate the chemical reactions that took place to produce this unique natural occurrence in the Philippines. ⁶McKinley Consulting, Baden-Dattwil, Switzerland